Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
نویسندگان
چکیده
Motion adaptation in directionally selective tangential cells (TC) of the fly visual system has previously been explained as a presynaptic mechanism. Based on the observation that adaptation is in part direction selective, which is not accounted for by the former models of motion adaptation, we investigated whether physiological changes located in the TC dendrite can contribute to motion adaptation. Visual motion in the neuron's preferred direction (PD) induced stronger adaptation than motion in the opposite direction and was followed by an afterhyperpolarization (AHP). The AHP subsides in the same time as adaptation recovers. By combining in vivo calcium fluorescence imaging with intracellular recording, we show that dendritic calcium accumulation following motion in the PD is correlated with the AHP. These results are consistent with a calcium-dependent physiological change in TCs underlying adaptation during continuous stimulation with PD motion, expressing itself as an AHP after the stimulus stops. However, direction selectivity of adaptation is probably not solely related to a calcium-dependent mechanism because direction-selective effects can also be observed for fast moving stimuli, which do not induce sizeable calcium accumulation. In addition, a comparison of two classes of TCs revealed differences in the relationship of calcium accumulation and AHP when the stimulus velocity was varied. Thus the potential role of calcium in motion adaptation depends on stimulation parameters and cell class.
منابع مشابه
Irection-selective Adaptation in Fly Visual Otion-sensitive Neurons Is Generated by an Intrinsic Onductance-based Mechanism
bstract—Motion-sensitive neurons in the blowfly brain resent an ideal model system to study the cellular mechaisms and functional significance of adaptation to visual otion. Various adaptation processes have been described, ut it is still largely unknown which of these processes are enerated in the motion-sensitive neurons themselves and hich originate at more peripheral processing stages. By n...
متن کاملCalcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential.
1. The large motion-sensitive tangential neurons in the fly third visual neuropil spatially pool the postsynaptic signals of many local elements. The changes in membrane potential and calcium concentration induced in these cells by visual motion are analyzed in vivo by simultaneous optical and intracellular voltage recording techniques. 2. Visual motion in the preferred direction leads to depol...
متن کاملTwo classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
Neurons exploit both membrane biophysics and biochemical pathways of the cytoplasm for dendritic integration of synaptic input. Here we quantify the tuning discrepancy of electrical and chemical response properties in two kinds of neurons using in vivo visual stimulation. Dendritic calcium concentration changes and membrane potential of visual interneurons of the fly were measured in response t...
متن کاملIn vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
The computation of motion plays a central role in visual orientation. The fly has been successfully used as a model system for analyzing the mechanisms underlying motion detection. Thereby, much attention has been paid to a neuronal circuit of individually identifiable neurons in the third visual ganglion that extracts different types of retinal motion patterns and converts these patterns into ...
متن کاملDendritic integration and its role in computing image velocity.
The mechanisms underlying visual motion detection can be studied simultaneously in different cell compartments in vivo by using calcium as a reporter of the spatiotemporal activity distribution in single motion-sensitive cells of the fly. As predicted by the Reichardt model, local dendritic calcium signals are found to indicate the direction and velocity of pattern motion but are corrupted by s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2000